The OpenMP Common Core
The Fortran Supplement (Version 1.2.1)

Timothy G. Mattson, Yun (Helen) He, and Alice E. Koniges

The MIT Press
Cambridge, Massachusetts
London, England

© 2019-2022 Timothy G. Mattson, Yun (Helen) He, and Alice E. Koniges
All rights reserved.

This book was set in INTEX by the authors.

Contents

[Preface to the Fortran supplement| v
(1 Parallel Computing] 1
12 The Language of Performance 5
13 What is OpenMP?| 7
|4 Threads and the OpenMP Programming Model| 9
5 Parallel Loops| 23
|6 OpenMP Data Environment| 33
7 Tasks in OpenMP| 47
18 OpenMP Memory Model| 67
9 Common Core Recap| 73
(10 Multithreading beyond the Common Core] 75
(11 Synchronization and the OpenMP Memory | 87

Modell
(12 Beyond OpenMP Common Core Hardware| 95

(13 Your Continuing Education in OpenMP)| 111

Preface to the Fortran supplement

OpenMP is defined for C, C++, and Fortran. Ideally, when you write a book about
OpenMP, everything is covered in triplicate; once for each of these programming
languages. If that was done, however, the resulting book would be cluttered and
painful to read. What’s a poor author to do?

After struggling with the language problem for many moons we came upon what
we hope is an effective compromise. Our book on the OpenMP Common Core covers
C and Fortran. Every time we present an item from the OpenMP API, we define it
in both C and Fortran. The code discussed in the book, however, only addresses C.
The result is a book tightly woven around a set of C examples; free from the clutter
of replicated content from other languages.

For C++ programmers, this solution works quite well. While offensive to a “proper’
C++ programmer, you can think of C++ as a superset of C. With few exceptions,
if you move OpenMP for C into C++, things just work. We thought this was an
adequate solution for Fortran programmers as well since surely modern Fortran

)

programmers understand C. Based on informal surveys at numerous OpenMP
tutorials, however, we’ve learned that this assumption is not universally true. Many
Fortran programmers are not comfortable with C. The authors of the OpenMP
Common Core started life as Fortran programmers. We love Fortran and would
hate to leave our fellow “Formula Translation” buddies out in the cold without the
benefit of our excellent book.

We came up with a simple solution to this problem. We produced a supplement
to our book that presents every example from the book implemented in Fortran.
Our Fortran friends would buy the OpenMP Common Core book and download this
free supplement. Having the two side by side, Fortran programmers could easily
absorb the contents of our book and apply what they have learned to their own
Fortran programs.

There is one technical complication to this solution. When presenting OpenMP
to C and C++ programmers, we delay introduction of clauses that manipulate the
data environment. There is so much to grapple with when learning multithreaded
programming. It greatly simplifies the discussion if we don’t move beyond the
default rules for data sharing until much later.

For Fortran programmers however, this is not possible. A C programmer can
declare a new variable almost anywhere. Fortran, on the other hand, requires that
all variables are declared before any executable code. Therefore, to discuss OpenMP
with Fortran programmers, we need to present one of the clauses from Chapter 6
(OpenMP Data Environment) right from the beginning. This clause is the private
clause.

vi Preface to the Fortran supplement

The private(list) clause takes a comma separated list of variables as an
argument. Each of the variables in the list are declared earlier (in the declarative
section of the program). We call those the original variables. When the private
clause is used with a construct that creates threads, each thread allocates a variable
for each of the original variables. These new variables are local or “private” to
each thread. These variables are uninitialized, so inside the code executed by the
OpenMP threads, you must initialize all private variables before using them.

There are numerous details with the private clause, but we leave those to
chapter 6. To get started with the OpenMP Common Core, you only need to use
the private clause with simple scalar variables. Once you know about this clause,
its use is almost self evident. You'll see when you get to its first use in Figure 4.2.

With that small technical detail out of the way, we return to our discussion of
the Fortran Supplement to our book on the OpenMP Common Core. Production of
the Fortran Supplement took far more time than we expected. As is often the case
when writing a book, we were so fixated on the text that we did not organize all the
code we used in one place. So one of us (Helen) extracted each and every fragment
of C code from the book. She then converted each of them to Fortran. While she
tested the resulting code, another member of the team (Tim) independently verified
all of her code. He then made a copy of the Latex source code for the OpenMP
Common Core book and modified it to include just the figures-with-source-code and
code-embedded-in-text replacing the C code with Helen’s Fortran code.

The result is this document. With Fortran versions for all the code from our
OpenMP Common Core book, it should make our book useful to Fortran program-
mers. We have mirrored the chapter structure of the Common Core book with
section headings that call out:

e The figure number for programs presented in the OpenMP Common Core
book

e The page number from the OpenMP Common Core book where code-embedded-
in-text is found.

We hope you find our solution to the multi-language problem in OpenMP useful.
We really want our Fortran readers to benefit from our wonderful little book on the
OpenMP Common Core.

Preface to the Fortran supplement vii

Acknowledgments

When we first started teaching OpenMP, Scientific Computing was almost exclusively
centered on Fortran. Even if programmers used a different language, they were
generally comfortable reading Fortran. Over the years, the dominance of Fortran has
slipped only to be replaced by C. In response, our materials for teaching OpenMP
shifted taking us to place where we largely ignored Fortran.

This situation is changing. We are moving Fortran back into the core materials we
use for teaching OpenMP. We can only do this, however, with help from the OpenMP
Fortran community. We all still use Fortran and are comfortable with the language,
but we need an expert who is up to date with the latest developments in Fortran
to check our work and make sure it is correct. Henry Jin (NASA Ames Research
Center) played the “expert Fortran reviewer” role for us. He found numerous errors,
both large and small, in our code. We are grateful to Henry for the many hours he
spent reviewing our code and making sure that this Fortran Supplement is of the
highest quality.

N O U W N

1 Parallel Computing

Figure 1.1: Our first OpenMP Program

A simple “Hello World” program to demonstrate concurrent execution.

program helloworld

use omp_lib

!'$omp parallel
write (x, ’'(a)’, advance='no’)’ Hello ~’
write (%, ’'(a)’) World ’

!'$omp end parallel

end program helloworld

2 Chapter 1

Figure 1.5: A pthreads “Hello World” program

A “Hello World” where a C function using Pthreads is called from a
Fortran Program.

1

2 | This is a Fortran wrapper to call C Pthreads function
3 | Save the contents in 2 files as below.
4

5 1 To compile:

6 ! gfortran —c¢ Fig_1.5 _PosixHello.f90
7 ! gcec —c Fig_ 1.5 _PosixHello_external.c
8 ! gfortran Fig_1.5 _PosixHello.o Fig_1.5 _PosixHello_external.o
9

10 # File 1: "Fig_1.5_PosixHello.f90”

11

12 program main

13 implicit none

14 external :: pthreads_c

15 call pthreads_c()

16 end program main

17

18 # File 2: "Fig_1.5_PosixHello_external.c”
19

20 #include <pthread.h>

21 #include <stdio.h>

22 #include <stdlib.h>

23 #define NUMTHREADS 4

24

25 void xPrintHelloWorld (void *InputArg)

26 {

27 printf(” Hello 7);

28 printf(” World \n”);

29 }

30

31 void pthreads_c_()

32 {

33 pthread_t threads [NUM.THREADS];

w
=~

int id;

Parallel Computing 3

35 pthread_attr_t attr;

36 pthread_attr_init(&attr);

37 pthread_attr_setdetachstate(&attr , PTHREAD_CREATE.JOINABLE) ;
38

39 for (id = 0; id < NUMTHREADS; id++) {

40 pthread_create(&threads[id], &attr, PrintHelloWorld, NULL);
41 }

42

43 for (id = 0; id < NUM.THREADS; id-++){

44 pthread_join (threads[id], NULL);

45 }

46

47 pthread_attr_destroy(&attr);

48 pthread_exit (NULL);

19 }

2 The Language of Performance

In this chapter, we focus on the words we use when talking about the performance
of a parallel program. These concepts are language independent. Hence, there is no
C, C++, or Fortran code in this chapter.

3 What is OpenMP?

Table 3.1: The contents of the OpenMP Common Core

A structured block is implied between any directive and its “end directive” form.
Square brackets ([1) denote optional items.

Directives, subprograms, clauses, Description

and an environment variable

'$SOMP parallel Create a team of threads to

'$OMP end parallel execute a structured block of code
integer function omp_get_num_threads() Number of threads in a team (N)

integer function omp_get_thread_num() Thread ID (from 0 to (N-1))

subroutine omp_set_num_threads(numthrds) | Set default number of threads to request
integer numthrds when creating a team of threads

double precision function omp_get_wtime() | Wall clock time

export OMP _NUM_THREADS=N Environment Variable: number of threads
'$OMP barrier Wait for all threads in the team

'$SOMP critical Mutual exclusion synchronization
'$OMP end critical

'$OMP do Divide a loop’s work between the team
['$SOMP end do]

'$SOMP parallel do Create a team then share work of a
['$OMP end parallel do] loop across the team

reduction(op: list) Reduction across a team

schedule(static [, chunk]) Fixed loop-distribution at compile time
schedule(dynamic [,chunk]) Loop-distribution varies at runtime
private (list) Create variable local to each thread/task
firstprivate (list) Create and initialize a private variable
shared(list) Share a variable between threads/tasks
default (none) Force explicit storage attribute definitions
nowait Disable implied barriers

'$OMP single Workshare work so it is done

I$SOMP end single by a single thread

ISOMP task Create an explicit task

'$OMP end task

ISOMP taskwait Wait for tasks to complete

0O Ui Wi

I I N I N R N N T N O e e W e S e S o G S G Sy S
DU WD O OO TR WN = OO

4 Threads and the OpenMP Programming Model

Figure 4.2: Shared data, private data, and parallel regions

Data movement and parallel regions — This simple program sets the default
number of threads to request for a parallel region to 4. A parallel region is defined with a
private clause so each thread has its own copy of ID. The thread ID is set and a simple
subroutine is called. Key points form this program: (1) all the threads independently
execute the same block of code in this parallel region, (2) all threads have access to the
array declared prior to the parallel region, and (3) each thread has its own, private copy of

the integer ID.

Program parReg
use omp_lib
implicit none

real :: A(10)
integer :: ID

A=0
call omp_set_num_threads(4)

'$omp parallel private (ID)
ID = omp._get_thread_.num () + 1
call pooh (ID, A)
write (+,100)ID, A(ID)
100 format ("A of ID(”, I3, ")=",£10.4)
'$omp end parallel

contains

subroutine pooh (ID, A)
integer :: ID
real , dimension(:) :: A
A(ID) = ID

end subroutine pooh

end Program parReg

0~ O Ui W N

—_
W= OO

10 Chapter 4

Figure 4.3: Thread counts and IDs

Library routines to manage threads — This program shows how to set the default
number of threads to request in parallel regions, query the number of threads in a team,
and set a unique thread ID. Notice the care taken to avoid a data race when assigning to

size_of _team.

Program parRegl
use omp-_lib
implicit none

integer :: ID, size_of_team , NThrds
call omp_set_.num_threads(4)
'$omp parallel private (ID,NThrds)

ID = omp_get_thread_num ()

NThrds = omp_get_num_threads ()

if (ID = 0) size_of_team = NThrds
!$omp end parallel

»

print x, "We just did the join on a team of size 7, size_of_team

end Program parRegl

0O Ui Wi+

I I I I I N I R N R e e e T
N U WNNHHE OO Utk WD = O o

Threads and the OpenMP Programming Model 11

Figure 4.5: The Pi program

Serial program to numerically estimate a definite integral using the mid-

point rule — The loop iterations are independent other than the summation into sum.

PROGRAM MAIN

USE OMP_LIB
IMPLICIT NONE

INTEGER :: i

INTEGER, PARAMETER :: num_steps = 100000000
REAL*8 :: x, pi, sum, step

REAL%8 :: start_time , run_time

sum = 0.0

step = 1.0 / num_steps
start_time = OMP.GET-WTIME()

DO i = 1, num_steps

x = (i — 0.5) % step
sum = sum + 4.0 / (1.0 + x * x)
ENDDO

pi = step *x sum

run_time = OMP.GET'WTIME() — start_time

WRITE(*,100) pi, num_steps, run_time
100 FORMAT(’pi = ’, f15.8, 7,7, il4, ’ steps,’,f8.3,7 secs’)

END PROGRAM MAIN

12 Chapter 4

Page 59: Loop level parallelism with the SPMD pattern

integer :: i
ID = omp_get_thread_num()
numthreads = omp_get_num_threads()

do i = ID + 1, num_steps, numthreads
! body of the loop
end do

0O Ui Wi+

== s e e
DU WD = OO

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Threads and the OpenMP Programming Model 13

Figure 4.6: SPMD parallel Pi program

SPMD parallel numerical integration with cyclic distribution of the loop
iterations — The program computes the area of the curve defined by the integrand by
filling the area under a curve with rectangles and summing up their areas. This version
of the program promotes the accumulation variable sum to an array and uses a cyclic

distribution of loop iterations between threads.

PROGRAM MAIN
USE OMP_LIB
IMPLICIT NONE

INTEGER, PARAMETER :: MAXTHREADS = 4

INTEGER :: i, j, id, numthreads, nthreads
INTEGER, PARAMETER :: num_steps = 100000000
REAL%8 :: pi, real_sum, step, x

REAL%8 :: start_time , run_time

REAL%8 :: sum (0:MAXTHREADS-1)
step = 1.0 / num_steps

CALL OMP_SET NUM THREADS(MAX THREADS)
start_time = omp_get_wtime ()

I$OMP PARALLEL PRIVATE(id ,x,numthreads)
id = omp_get_thread_num ()
numthreads = OMP_GET NUM.THREADS()
sum(id) = 0.0

IF (id = 0) THEN
nthreads = numthreads
ENDIF

DO i = id, num_steps — 1, numthreads
b'e (i + 0.5) % step
sum(id) = sum(id) + 4.0 / (1.0 + x * x)
ENDDO
'$OMP END PARALLEL

32
33
34
35
36
37
38
39
40
41
42

14

100

pi = 0.0

DO i = 0, nthreads—1
pi = pi + sum(i)

ENDDO

pi = step * pi

run_time = OMP.GETWTIME() — start_-time
WRITE(*,100) pi, num-_steps,

FORMAT(’pi = ', f15.8,

END PROGRAM MAIN

)

)

)

)

run_time

i14 ,

steps ,

Chapter 4

' £8.3,"

secs ’)

0~ O UL i W N -

NeJ

10
11
12
13
14
15
16
17
18
19
20

Threads and the OpenMP Programming Model 15

Figure 4.7: SPMD Pi program with block-distribution of loop
iterations

SPMD parallel numerical integration with block decomposition of the
loop iterations — The parallel region from the code in Figure 4.6, but replacing the

cyclic distribution of loop iterations with a block distribution.

step = 1.0 / num_steps

I$OMP PARALLEL PRIVATE(id ,x,numthreads, istart ,iend)
id = omp_get_thread _num ()
numthreads = OMP_GET NUM_THREADS()
sum(id) = 0.0

IF (id = 0) THEN
nthreads = numthreads
ENDIF

istart = id * num_steps / numthreads + 1
iend = (id+1) * num_steps / numthreads
if (id = (numthreads —1)) iend = num_steps

DO i = istart , iend
x = (i — 0.5) = step
sum(id) = sum(id) + 4.0 / (1.0 + x * x)
ENDDO
'$OMP END PARALLEL

0~ O UL i W N -

e e T T R G
N O Uk WO O

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

16 Chapter 4

Figure 4.9: Remove false sharing with a padded array

Padded sum array numerical integration — The sum array padded to fill an L1
cache line with the extra dimension and put subsequent rows of sum, i.e., each sum(0,id),

on different cache lines.

PROGRAM MAIN
USE OMP_LIB
IMPLICIT NONE

INTEGER :: i, j, id, numthreads, nthreads
INTEGER, PARAMETER :: num_steps=100000000
INTEGER, PARAMETER :: MAX THREADS=4
INTEGER, PARAMETER :: CBLK=S8

REAL%8 :: pi, step, x

REAL%8 :: start_time , run_time

REAL%8 :: sum(CBLK,0:MAX THREADS—-1)

step = 1.0 / num_steps

CALL OMP_SET NUM THREADS(MAX THREADS)
start_time = omp_get_wtime ()

!$OMP PARALLEL PRIVATE(id ,x,numthreads)
id = omp_get_thread_num ()
numthreads = OMP_GET NUM_THREADS()
sum(1,id) = 0.0

IF (id = 0) THEN
nthreads = numthreads
ENDIF

DO i = id, num_steps—1, numthreads
x = (i + 0.5) = step
sum(1,id) = sum(1,id) + 4.0 / (1.0 + x * x)
ENDDO
'$OMP END PARALLEL

pi = 0.0

34
35
36
37
38
39
40
41
42
43

Threads and the OpenMP Programming Model

100

DO i = 0, nthreads — 1
pi = pi + sum(1,i)
ENDDO

pi = step * pi

run_time = OMP.GETWTIME() — start_time

WRITE(%,100) pi, run_time, nthreads

FORMAT(’pi is ’,f15.8,’

END PROGRAM MAIN

in

1, 8.3,

secs and

17

’,i3,’ threads’)

0O Ui Wi+

O W W WK NDNDLNDNDNDDNDNDN DN = e = e
W O OO IDNUTLi WNNHFE OO0 Uik WNHFHOO©

34

18

Chapter 4

Figure 4.10: Mutual exclusion synchronization with critical

A critical section — consume() must be called by one thread at a time.

! sample compile command to
! gfortran —fopenmp —c

program crit
use omp_lib
implicit none

real :: res = 0.0
integer :: niters = 1000
real :: B

integer :: i, id, nthrds

interface
function big_job (i)
real :: big_job

integer , intent (in)

end function big_job

function consume(a)
real :: consume
real , intent (in)
end function consume
end interface

generate the x.0 object file:
Fig_4.10 _crit . f90

'$omp parallel private (id, nthrds, B)
id = omp_get_thread_num ()
nthrds = omp_get_num_threads()

do i = id, niters — 1, nthrds
B = big_job (i)
!'$omp critical
res = res + consume(B)

!'$omp end critical
end do
!$omp end parallel
end program crit

0~ O Ui W N

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Threads and the OpenMP Programming Model 19

Figure 4.11: Pi program with a Critical section

Numerical integration with a critical section — The partial sums go into a
private variable allocated by each thread. These private variables are extremely unlikely to
reside on the same L1 cache lines and therefore, there will be no false sharing. The partial

sums are combined inside a critical section so there is no data race.

PROGRAM MAIN
USE OMP_LIB
IMPLICIT NONE

INTEGER :: i, j, id, numthreads, nthreads
INTEGER, PARAMETER :: num_steps=100000000
INTEGER, PARAMETER :: MAX THREADS=4
REAL%8 :: pi, real_sum, step, full_sum, x
REAL%8 :: start_time , run_time

REAL%8 :: partial_sum

full_sum = 0.0
step = 1.0 / num_steps

CALL OMP-SET NUM_THREADS(MAX THREADS)
full_sum = 0.0
start_time = OMP.GET-WTIME()

!$OMP PARALLEL PRIVATE(i ,id ,numthreads, partial _sum ,x)
id = OMP.GET THREAD NUM)
numthreads = OMP_GET NUM.THREADS()

partial_sum = 0.0
if (id = 0) nthreads = numthreads
DO i = id, num_steps—1, numthreads
x = (1+40.5)*step
partial_sum = partial_sum + 4.0/(1.0+xxx)
ENDDO

I$OMP CRITICAL

33
34
35
36
37
38
39
40
41
42
43

20 Chapter 4

full_sum = full_sum + partial_sum
I$OMP END CRITICAL
'$OMP END PARALLEL
pi = step x full_sum
run_time = OMP.GET'WTIME() — start_-time
WRITE(%,100) pi, run_time, nthreads
100 FORMAT(’pi is ’,f15.8,’ in ’,f8.3,’secs and ’,i3,’ threads’)

END PROGRAM MAIN

0O Ui Wi+

e e e
=W N = OO

Threads and the OpenMP Programming Model 21

Figure 4.12: Barrier synchronization

Example of an explicit barrier — An explicit barrier is used to assure that all threads
complete filling the array Arr before using it to compute Brr. We assume the SPMD
pattern so we pass the thread id and the number of threads to all the functions. Notice
that only one thread saves the number of threads to a shared variable should it be needed

after the parallel region.

real*8 :: Arr(8), Brr(8)

integer :: numthrds
integer :: id, nthrds
real *8, external :: lots_of_work , needs_all_of_Arr

call omp_set_num_threads(8)
!'$omp parallel private (id, nthrds)
id = omp_get_thread_num () + 1
nthrds = omp_get_num_threads ()
if (id = 1) numthrds = nthrds
Arr(id) = lots_of_work (id, nthrds)
!$omp barrier
Brr(id) = needs_all_of_Arr(id, nthrds, Arr)
!'$omp end parallel

5 Parallel Loops

Page 75: Basic vector addition loop

doi=1, N
a(i) = a(i) + b(1)
end do

Figure 5.1: SPMD pattern for loop-level parallelism

SPMD parallel vector add program — Create a team of threads and assign one

chunk of loop iterations to each thread.

! OpenMP parallel region and SPMD pattern

integer :: id, i, Nthrds, istart, iend

id = omp_get_thread_num ()
Nthrds = omp_get_num_threads ()

1

2

3

4

5 !$omp parallel private(id,i,istart ,iend,Nthrds)
6

7

8 istart

= id * N / Nthrds + 1
(id + 1) = N / Nthrds

9 iend =

10 if (id = Nthrds — 1) iend =N
11 do i = istart , iend

12 a(i) = a(i) + b(i)

13 end do

14 !'$omp end parallel

Page 76: Worksharing-loop directives
I$omp do

'$omp end do

© 00~ O Uk Wi

N O U W N

24 Chapter 5

Figure 5.2: The worksharing-loop construct

Loop-level parallelism for the vector add program — We create a team of
threads and then add a single directive to split up loop iterations among threads.

! OpenMP parallel region and a worksharing—loop construct

!'$omp parallel
!'$omp do
doi =1, N
a(i) = a
end do
'$omp end do
!'$omp end parallel

(i) + b(i)

Page 77: Standard do loop format to use with a worksharing-loop
construct

do i = init, end, incr
structured block
end do

Figure 5.3: Parallel and worksharing-loop constructs

An example of a parallel worksharing-loop construct — Create multiple threads,
then split the loop iterations among multiple threads to share the work.

!'$omp parallel
'$omp do
do i =N, 0, -2
call NEATSTUFF(i)
enddo
'$omp end do
!'$omp end parallel

—_
O © 00O Uk W

Parallel Loops 25

Page 79: Combined parallel worksharing-loop construct

The following pattern with a pair of OpenMP constructs, one to create the team of
threads and the other to split up loop iterations among threads, is very common:

'$omp parallel
'$omp do
do-loop
'$omp end do
'$omp end parallel

As a convenience, these two directives can be combined into a single directive:

!$omp parallel do
do-loop
!$omp end parallel do

Figure 5.4: A simple program with a reduction

A serial reduction example — This loop has a loop-carried dependence through
the variable ave and therefore, the loop cannot be parallelized with a worksharing-loop

directive without completely changing the body of the loop.

integer :: i
real*8 :: ave, A(N)

call Init(A,N)

ave = 0.0
do i =1, N

ave = ave + A(1i)
enddo

ave = ave/N

0~ O UL W N -

—_ =
W= OO

26 Chapter 5

Figure 5.5: Worksharing-loop with a reduction

An OpenMP reduction —Each thread has a private copy of the variable ave to use
for its loop iterations. At the end of the loop, these values are combined to create the final
value of the reduction which is then combined with the globally visible, shared copy of the
variable ave.

integer :: i
real*8 :: ave, A(N)

call Init (A,N)
ave = 0.0

!$omp parallel do reduction(+:ave)

do i =1, N
ave = ave + A(1)
enddo

!'$omp end parallel do

ave = ave/N

00 ~J O UL i W N =

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Parallel Loops 27

Figure 5.6: Loop schedules specified “at compile time”

A worksharing-loop with a static schedule — In this example, the work is pre-
dictable and balanced for each loop index. Using the static schedule is expected to work

best in this case.

program main
use omp_lib
implicit none

! Use a smaller value of ITER if available memory is too small
integer , parameter :: ITER = 100000000

integer :: i, id
real*8 :: A(iter)
realx8 :: tdata
real :: x

do i = 1, ITER
A(i) = 2.0 * i
enddo

'$omp parallel private (id, tdata, x)

id = omp_get_thread_num ()
tdata = omp_get_wtime ()

!$omp do schedule(static)
do i = 1, ITER

x= 1x 1.0

A(i) = A(i) = sqrt(x) / (sin(x) *x tan(x))
enddo

tdata = omp-get_wtime () — tdata

7 ” »

if (id = 0) print *, "Time spent is 7, tdata, sec

'$omp end parallel
end program main

00~ O UL i W N -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

28 Chapter 5

Figure 5.7: Dynamic loop schedules that vary at runtime

A worksharing-loop with a dynamic schedule — In this program, the work per
iteration is highly variable. The dynamic schedule should be much better at balancing the
load across the team of threads.

program main

use omp_lib
implicit none

! Use a smaller value of ITER if available memory is too small
integer , parameter :: ITER = 50000000

integer :: i, id
real*8 :: tdata
integer :: sum = 0

'$omp parallel private (i, id, tdata)
id = omp_get_thread_num ()
tdata = omp_get_wtime ()

'$omp do reduction (+:sum) schedule (dynamic)
do i = 2, ITER
if (check_prime(i) = 1) sum = sum + 1
enddo
!'$omp end do

tdata = omp-_get_wtime () — tdata

if (id = 0) print %, "Number of prime numbers is 7, &
& sum, ”in 7, tdata, 7 sec”
!$omp end parallel

contains
integer function check_prime (num)
implicit none
integer , intent (in) :: num
integer :: i, iend

34
35
36
37
38
39
40
41
42
43
44
45
46

Parallel Loops

iend = int (sqrt(num=x1.0))
do i = 2, iend

if (mod(num,i) == 0) then
check_prime = 0
return
endif
enddo
check_prime =1

end function check_prime

end program main

29

0O Ui Wi+

[e B R R S s
N O U W~ OO

30 Chapter 5

Figure 5.8: Using nowait to disable implied barriers

Using a nowait clause with worksharing-loops — In this example, we explore
the need for barriers and cases where they can be disabled with a nowait clause.

real*8 :: A(big), B(big), C(big)
integer :: id

!$omp parallel private(id)
id = omp_get_thread_num () + 1
A(id) = big_calcl (id)

'$omp barrier

'$omp do
do i =1, N
B(i) = bi

end do
'$omp enddo nowait

g_calc2(C,1)

A(id) big_calc4 (id)
!'$omp end parallel

0O Ui Wi

I I I I N I I N T T N N G S Gy Sy WG S S WY
S OO TDDAE WN — DO U R WN RO

Parallel Loops 31

Figure 5.9: A particularly simple parallel Pi program

Pi program with a worksharing-loop and a reduction — The program computes
the integral of a function by filling the area under a curve with rectangles and summing
their areas. Loop iterations are divided among threads by the compiler under direction
of the worksharing-loop construct. The reduction creates a private copy of sum for each
thread, initializes it to zero, accumulates partial sums into the sum variable, and then

combines partial sums to generate the global sum.

PROGRAM MAIN
USE OMP_LIB
IMPLICIT NONE

INTEGER :: i, id

INTEGER, PARAMETER :: num_steps=100000000
INTEGER :: NTHREADS = 4

REAL*8 :: x, pi, sum, step

REAL%8 :: start_time , run_time

sum = 0.0
step = 1.0 / num_steps
start_time = OMP.GET'WTIME()

CALL OMP_SET NUM THREADS (NTHREADS)

!$OMP PARALLEL PRIVATE(i,x)
I$OMP DO REDUCTION(+:sum)
DO i = 1, num_steps
x = (i — 0.5) % step
sum = sum + 4.0 / (1.0 + x * x)
ENDDO
I$OMP END DO
'$OMP END PARALLEL

pi = step * sum
run_time = OMP.GETWTIME() — start_time
WRITE(#,100) pi, run_time

100 FORMAT(’pi is ’,f15.8,’ in ’,f8.3,’ secs’)
END PROGRAM MAIN

0~ O Ui W N -

I e T R R e s T
N O U W= OO

32 Chapter 5

Figure 5.10: Making loop iterations independent

Loop dependence example —The first loop is sequential and contains a loop-carried
dependence. The value of j for a loop index is dependent on the value of j for the previous
loop index. In the parallel code in the second loop, the loop-carried dependence has been

removed by calculating j from the loop control index.

! Sequential code with loop dependence
integer :: i, j, AMAX)

j =25

do i = 1, MAX
=]+ 2
A(i) = big(j)

end do

! parallel code with loop dependence removed
integer :: i, j, AMAX)
!$omp parallel do private(])
do i = 1, MAX
do j =5 4+ 2x(i+1)
A1) = big(j)
end do
end do
!'$omp end parallel do

0O Ui Wi+

DO DO DO MO MO N = = b e e e e e
U W N O OO Uk WwNn = OO

6 OpenMP Data Environment

Firgure 6.1: How data is stored by default

An example of default storage attributes — A, index, count are shared variables
since A is a global variable defined in a module, index is defined prior to the parallel region,
and count is a saved variable. temp is a private variable since it is declared inside the
parallel region.

! File #1:

module data_mod
real*8 :: A(10)

end module data_mod

program main
use data_mod
implicit none
integer :: index(10)
!$omp parallel
call work(index)
'$omp end parallel
print *, index (1)
end program main

I File #2:

subroutine work(index)
use data_mod
implicit none

integer :: index
real*8 :: temp(10)
integer , save :: count

end subroutine work

0~ O Ui W N -

CO W N DN DN DD RN DN DD N DN DN = = = = = = = s
— O O 0 I U WD O OO Uk W= OO

34 Chapter 6

Figure 6.3: The shared and private clauses

The shared clause — An example of a shared clause on a parallel construct. Strictly
this clause is not needed. It is included in this case to remind the programmer that of the
three variables A, B, and C, only B and C are shared. A copy of the variable A is created for
each thread by the clause private(A).

! sample compile command to generate x.o0 object file:
! gfortran —fopenmp —c¢ Fig_6.3 _sharedEx.f90

program sharedEx
use omp_lib
implicit none
integer :: A, B, C

interface
subroutine initialize (A, B, C)
integer , intent(out) :: A, B, C
end subroutine

end interface

call initialize (A, B, O)

! remember the value of A before the parallel region
print %, 'A before =7, A

!'$omp parallel shared (B,C) private(A)
A = omp_get_thread num ()
!$omp critical
C=B+ A
'$omp end critical
!'$omp end parallel

! A in the parallel region goes out of scope, we revert
! to the original variable for A

print %, ’A after = ', A, > and C= ", C

end program sharedEx

00 ~J O UL i W N -

e e el e
U W N~ OO

OpenMP Data Environment 35

Figure 6.4: The Private clause (note: this program is not correct)

An example of a private clause — The original variable tmp is masked by the private
copy of the variable inside the parallel do region. This program is incorrect since a private

variable is not initialized.

! sample compile command to generate .0 object file:
!' gfortran —fopenmp —c Fig_6.4 _wrongPrivate. 90

program wrong
integer :: tmp
tmp = 0

!$omp parallel do private (tmp)
do j = 1, 1000
tmp = tmp +j
enddo
!'$omp end parallel do

print =, tmp ! tmp is 0 here
end program wrong

0O Ui Wi

I I R e N el el e e N e e
D= O O 00O Uik WNH—=OO

36 Chapter 6

Figure 6.5: OK to use a local variable of same name outside of a
module

A second example of the private clause — This Fortran program works (unlike
the corresponding C code which has a subtle bug). tmp is a local variable in subroutine 0K,
not the one from the module file as updated in subroutine work, hence the value printed

in line 13 should be the same as the original value 0 as defined in line 9 before the parallel

region.

I File #1

module data_mod
integer :: tmp

end module data_mod

subroutine OK()
implicit none
integer :: tmp
tmp = 0
'$omp parallel private (tmp)
call work()
'$omp end parallel
print x, tmp ! tmp is 0, same as the original local wvalue
! defined before the parallel region
end subroutine OK

I File #2

subroutine work ()
use data_mod
implicit none
tmp = 5

end subroutine work

N O U W N

ISR R

OpenMP Data Environment 37

Figure 6.6: Creating private variables that are initialized

Example of using the firstprivate clause — incr is a firstprivate variable so it is
private to each thread and has an initial value (zero).
incr = 0

!'$omp parallel do firstprivate (incr)
do i = 1, MAX

if (mod(i,2) = 0) incr = incr + 1
A(i) = incr
end do

!'$omp end parallel do

Figure 6.7: Data environment quiz

An OpenMP data environment quiz — Consider the storage attributes and values
for A, B and C.

A=1
B=1
c=1

!'$omp parallel private(B) firstprivate (C)

38 Chapter 6

Figure 6.8 and 6.9: Find the area of the Mandelbrot set

Mandelbrot set area: original code with errors — This version of the program
has multiple bugs. Your job is to inspect the code and find the bugs.

'C PROGRAM: Mandelbrot area

'C

!C PURPOSE: Program to compute the area of a Mandelbrot set.

1C Correct answer should be around 1.510659.

1C WARNING: this program may contain errors

'C

!C USAGE: Program runs without input ... just run the executable
'C

MODULE mandel_module
implicit none

INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(14)
REAL(KIND = DP) :: r

INTEGER, PARAMETER :: NPOINTS=1000
INTEGER, PARAMETER :: MAXITER=1000
INTEGER :: numoutside=0

TYPE d_complex
REAL(KIND = DP) :: r
REAL(KIND = DP) :: i

END TYPE d_complex

TYPE(d_complex) :: c
contains
SUBROUTINE testpoint()

IC iterate over z=z*z+c. |z| > 2 means the point is outside set

OpenMP Data Environment 39

!C If loop count reaches MAXITER, point is 1inside the set

implicit none
TYPE(d_complex) :: z
INTEGER :: iter
REAL(KIND = DP) :: temp

DO iter = 1, MAXITER

temp = (zhr*z¥hr) - (2hixz%i) + cir
zZhi = zZhr*zhi*2 + chi
z%r = temp

IF ((z¥%r*zir + zhi*z%i) > 4.0) THEN
numoutside = numoutside + 1
EXIT
ENDIF
ENDDO

END SUBROUTINE
END MODULE mandel_module

PROGRAM mandel_wrong
USE OMP_LIB

USE mandel_module
IMPLICIT NONE

INTEGER :: i, j
REAL(KIND = DP) :: area, error
REAL(KIND = DP) :: eps = 1.0e-5

!C Loop over grid of complex points in the domain of the
!C Mandelbrot set, testing each point to see whether it is
'C inside or outside the set.

40 Chapter 6

!$0MP PARALLEL DO DEFAULT(shared) PRIVATE(c,eps)

DO i = NPOINTS

DO j = NPOINTS
chr = -2.0 + 2.5 * DBLE(i-1) / DBLE(NPOINTS) + eps
c%i = 1.125 * DBLE(j-1) / DBLE(NPOINTS) + eps
CALL testpoint()

ENDDO

ENDDO

'$0MP END PARALLEL DO

1,
1,

!C Calculate area of set and error estimate and output the results

area = 2.0 * 2.5 *1.125 * DBLE(NPOINTS*NPOINTS - numoutside)
& /DBLE (NPOINTS*NPOINTS)
error = area / DBLE(NPOINTS)

PRINT *, "numoutside=", numoutside
WRITE(*,100) area, error

100 FORMAT("Area of Mandlebrot set =", £f12.8, " +/-", £12.8)
PRINT *, "Correct answer should be around 1.510659"

END PROGRAM mandel_wrong

&

OpenMP Data Environment 41

Figures 6.10 and 6.11: Debugging the Mandelbrot set program

Mandelbrot set area solution — c is passed as an argument to subroutine testpoint.

eps is declared as firstprivate and the inner loop index j is declared as private.

'C PROGRAM: Mandelbrot area

1C
!C PURPOSE: Program to compute the area of a Mandelbrot set.
'C Correct answer should be around 1.510659.
1C
!C USAGE: Program runs without input ... just run the executable
1C
MODULE mandel_par_module
implicit none
INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(14)
INTEGER, PARAMETER :: NPOINTS=1000
INTEGER, PARAMETER :: MAXITER=1000
INTEGER :: numoutside=0
TYPE d_complex
REAL(KIND = DP) :: r
REAL(KIND = DP) :: i
END TYPE d_complex
contains
SUBROUTINE testpoint(c)
!C iterate over z=z*z+c. |z| > 2 means the point is outside set

!C If loop count reaches MAXITER, point is inside the set

implicit none
TYPE(d_complex) :: z,cC
INTEGER :: iter

42

REAL(KIND = DP) :: temp

DO iter = 1, MAXITER
temp = (zhr*zhr) - (2hixzhi) + cir
zZ%i = zY%r*z%i*2 + chi

z%hr = temp

IF ((z¥%r*zir + zhi*z%i) > 4.0) THEN
'$0MP CRITICAL
numoutside = numoutside + 1
1$0MP END CRITICAL
EXIT
ENDIF
ENDDO

END SUBROUTINE
END MODULE mandel_par_module
PROGRAM mandel_par
USE OMP_LIB
USE mandel_par_module
IMPLICIT NONE
INTEGER :: i, j
REAL(KIND = DP) :: area, error
REAL(KIND = DP) :: eps = 1.0e-5

TYPE(d_complex) :: c

! CALL OMP_SET_NUM_THREADS (4)

!C Loop over grid of complex points in the domain of the

Chapter 6

OpenMP Data Environment 43

!C Mandelbrot set, testing each point to see whether it is
'C inside or outside the set.

'$OMP PARALLEL DO DEFAULT (shared) FIRSTPRIVATE(eps) PRIVATE(c,j)

DO i 1, NPOINTS

DO j 1, NPOINTS
chr = -2.0 + 2.5 * DBLE(i-1) / DBLE(NPOINTS) + eps
c%i = 1.125 * DBLE(j-1) / DBLE(NPOINTS) + eps
CALL testpoint(c)

ENDDO

ENDDO

'$0MP END PARALLEL DO

!C Calculate area of set and error estimate and output the results
write(*,*)"numoutside=", numoutside

area = 2.0%2.5%1.125 *x DBLE(NPOINTS*NPOINTS - numoutside) &
& / DBLE(NPOINTS*NPOINTS)
error = area / DBLE(NPOINTS)

WRITE(*,100) area, error
100 FORMAT("Area of Mandlebrot set = ", £f12.8, £12.8)
WRITE(*,%*)"Correct answer should be around 1.510659"

END PROGRAM mandel_par

0~ O Ui W N -

e el el
DU WD~ OO

17
18
19
20
21
22
23
24
25
26
27
28
29

44

Chapter 6

Figure 6.12: Worksharing-loops and data environment clauses
help us write particularly simple parallel Pi programs

Pi Program with combined parallel worksharing-loop and reduction —

Each thread accumulates its local sum that is later combined into the global sum with the

reduction operation. Variable x is declared as private with a data environment clause.

PROGRAM MAIN
USE OMP_LIB
IMPLICIT NONE

INTEGER :: i, id

INTEGER, PARAMETER :: num_steps=100000000
INTEGER :: NTHREADS = 4

REAL*8 x, pi, sum, step

REAL%8 start_time , run_time

sum = 0.0
step = 1.0 / num_steps

CALL OMP_SET NUM THREADS (NTHREADS)
start _time = OMP.GET_WTIME()

I$OMP PARALLEL DO PRIVATE(i ,x) REDUCTION(+:sum)

DO i = 1, num_steps

x = (i — 0.5) % step
sum = sum + 4.0 / (1.0 + x * x)
ENDDO

!$OMP END PARALLEL DO

100

pi = step * sum

run_time = OMP.GETWTIME() — start_time
WRITE(%,100) pi, run_time

FORMAT(’pi is ’,f15.8,’ in ’,f8.3, secs’)

END PROGRAM MAIN

OpenMP Data Environment 45

Figure 6.13: Static arrays in data environment clauses

Static arrays in data environment clauses — The compiler creates a private array
with 1000 values of type int on the stack for each thread.

int varray(1000)
call initv(1000, varray) ! function to initialize the array

!$omp parallel private(varray)
! body of parallel region not shown
!$omp end parallel

Figure 6.14: Data environment clauses with dynamic arrays and
pointers

Dynamic arrays and pointers in data environment clauses — The compiler

gives each thread its own pointer pointing to the same block of memory.

real, pointer :: vptr(:)

allocate (vptr(1000))
call initv(1000, vptr) ! function to initialize the array

'$omp parallel firstprivate(vptr)
! body of parallel region not shown
'$omp end parallel

46 Chapter 6

Page 119: Array sections

You define an array section in terms of the lower-bound and the upper-bound of
the section.

(lower-bound:upper-bound)
(:upper-bound) ! lower-bound implied as one

We can use an array section in a reduction where we copy a section of an array into
a private copy of that array for each thread. That private copy of the array section
is used in the reduction.

I$omp parallel for reduction(+:vptr(1:1000))

ST W N

7 Tasks in OpenMP

Figure 7.1: Traversing a linked list

Serial linked list program-— Traverse the linked list and do a block of work (processwork (p))
for each node in the list where we assume processwork(p) for any node is independent of
the other nodes.

p => head
do

call processwork (p)

p => p%mnext

if (.not. associated(p)) exit
end do

48 Chapter 7

Figure 7.2: Traversing a linked list in parallel using worksharing-
loop constructs

Parallel linked list program without using tasks — Three passes through the
data to count the length of the list, collect values into an array, and process the array in

parallel. This is an example of the inspector-executor design pattern.

1 ! sample compile command to generate .0 object file:
2 ! gfortran —fopenmp —c Fig_7.2 _linkedListNoTasks.f90
3

4 module list_mod

5 integer , parameter :: NMAX = 10

6 type :: node

7 integer :: data

8 integer :: procResult

9 type(node), pointer :: next

10 end type node

11 end module list_mod

12

13 program main

14 use list_mod

15 implicit none

16

17 type(node), pointer :: p => null()
18 type(node), pointer :: temp => null()
19 type(node), pointer :: head => null()
20 type(node), dimension(:), allocatable, target :: parr
21

22 interface

23 ! initialize the list (not shown)

24 subroutine initList (p)

25 use list_mod

26 implicit none

27 type(node), pointer :: p

28 end subroutine initList

29

30 ! a long computation (not shown)

31 integer function work(data)

32 implicit none

Tasks in OpenMP

33 integer :: data

34 end function work

35 end interface

36

37 integer :: i, count

38

39 call initList (p)

40

41 ! save head of the list
42 head => p

43

44 count = 0

45 do

46 p = plnext

47 count = count + 1

48 if (.not. associated(p)) exit
49 end do

50

51 allocate (parr(count))

52

53 p => head

54 do i = 1, count

55 parr (i)%data = phdata
56 p => plmnext

57 end do

58

59 '$omp parallel do schedule(static ,1)
60 do i = 1, count

61 call procWork(parr(i))
62 end do

63 !'$omp end parallel do

64

65 contains

66

67 subroutine procWork (a_node)
68 use list_mod

69 implicit none

70 type(node) :: a_node

71 integer :: n

72
73
74
(0]
76
7

50

integer , external :: work
n = a_node%data
a_node%procResult = work(n)

end subroutine procWork

end program main

Chapter 7

0~ O UL i W N =

—_ =
= O ©

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Tasks in OpenMP 51

Figure 7.4: A simple program with OpenMP tasks

Schrodinger’s Program — Two threads each generates two tasks. They wait a random
bit of time and then set a shared variable to true or false. Whichever task executes last

determines the final value of the variable and whether the cat is “dead” or “alive”.

Schrodingers racy program ... is the cat dead or alive?

|

!

! You can use atomics and make the program race free, or comment out
! the atomics and run with a race condition. It works in both cases
|
|
!

History: Written by Tim Mattson, Feb 2019
Converted to Fortran by Helen He, Nov 2019

program main
use omp_lib
implicit none

! random number generator parameters

! (from numerical recipies)

integer , parameter :: MULT = 4096
integer , parameter :: ADD = 150889
integer , parameter :: MOD_val = 714025

realx8 :: wait_val, val
integerx8 :: rand, i, dcount, lcount, coin
logical :: dead_or_alive, HorT

integer , parameter :: NTRIALS = 10

dcount = 0
lcount = 0

do i = 1, NTRIALS
'$omp parallel num_threads(2) shared(dead_or_alive) private(val)

if (omp_get_thread_num () = 0) then

print *, 7 with 7, omp_get_num_threads(), 7 threads.”

write (x, ’'(a)’, advance="no’)” Schrodingers program says the cat
endif

is

52 Chapter 7

34

35 !$omp single

36 ! 7flip a coin” to choose which task is for the dead
37 ! cat and which for the living cat.

38 call seedIt(coin)

39 HorT = flip (coin)

40

41 ! without the atomics, these tasks are participating in a data race
42 !'$omp task

43 val = waitAbit ()

44 ! a store of a single machine word (bool)
45 1$omp atomic write

46 dead_or_alive = HorT

47 !$omp end atomic

48 !'$omp end task

49 !'$omp task

50 val = waitAbit ()

51 ! a store of a single machine word (bool)
52 !$omp atomic write

53 dead_or_alive = .not. HorT

54 !$omp end atomic

55 !'$omp end task

56 !$omp end single

57 !$omp end parallel

58

59 if (dead_or_alive) then

60 print x, 7 alive.”

61 lcount = lcount + 1

62 else

63 print x, 7 dead.”

64 dcount = dcount + 1

65 endif

66 end do ! end loop over trials (for testing only)
67

68 print %, 7 dead ”, dcount, ” times”, 7 and alive ”, lcount, ” times.”
69

70 contains

71

72 | seed the pseudo random sequence with time of day

73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

Tasks in OpenMP 53

subroutine seedIt(val)
implicit none
integerx8 :: wval
val = int (omp_get_wtime ())
end subroutine seedIt

! Linear congruential random number generator
integer+8 function nextRan(last) result(next)
implicit none
integer*8, intent(in) :: last
next = mod(MULT*last+ADD, MOD_val)

end function nextRan

! flip a coin ... heads (true) or tails (false)
logical function flip (coin)
implicit none

integerx8 :: coin

coin = nextRan(coin)

if (coin > MOD_val/2) then
flip = .true.

else
flip = .false.

endif

end function flip

! wait a short random amount of time
real*8 function waitAbit() result(val)
implicit none
integer*8 :: i, count, rand
val = 0.0
call seedIt(rand)
count = nextRan(rand)

! do some math to make us wait a while

do i = 1, count

rand = nextRan (rand)

val = val + dble(rand)/dble (MULT)
end do

54 Chapter 7

112 end function waitAbit
113
114 end program main

0O Ui Wi

NeJ

10
11
12
13

Tasks in OpenMP 55

Figure 7.5: Single worksharing construct

An OpenMP single construct example — All threads execute do_many_things and

do_many_other_things, but only one thread executes exchange_boundaries.

'$omp parallel
call do_many_things()
I$omp single
call exchange_boundaries()
I$omp end single
call do_many_other_things()
!$omp end parallel

Figure 7.6: Creating explicit tasks

A basic task example — Inside a parallel region, 3 tasks are created by a single thread.

!'$omp parallel
'$omp single
'$omp task
call fred ()
!$omp end task
I$omp task
call daisy ()
'$omp end task
'$omp task
call billy ()
!$omp end task
'$omp end single
!$omp end parallel

1
2
3
4
5
6
7
8

9
10
11
12
13
14

N O ULk W=

56 Chapter 7

Figure 7.7: waiting for tasks to finish with taskwait

A taskwait example — Tasks fred and daisy must complete before task billy starts.

'$omp parallel
'$omp single
'$omp task
call fred ()
!'$omp end task
'$omp task
call daisy ()
!$omp end task
'$omp taskwait
'$omp task
call billy ()
!$omp end task
'$omp end single
!$omp end parallel

Figure 7.8: How data moves between tasks

Tasks data environment example — A is shared, B is firstprivate, and C is private.

integer :: C
'$omp parallel shared(A) private (B)

'$omp task private (C)
call compute(A, B, C)
'$omp end task
!$omp end parallel

0O Ui Wi+

— =
N = O O

Tasks in OpenMP 57

Figure 7.9: Tasks make parallel linked list traversal really simple

Linked list with tasks — The implementation with OpenMP tasks is much more

elegant than the three-pass solution in Figure 7.2.

!'$omp parallel
'$omp single
p => head
do
!$omp task firstprivate(p)
call processwork(p)
!'$omp end task
p => p%mext
if (.not. associated(p)) exit
end do
'$omp end single
'$omp end parallel

0O Ui Wi+

DR RN NDNDNDNDN DN = == s e
O I TR W OO U W —= OO

58 Chapter 7

Figure 7.10: A really inefficient way to compute Fibonacci num-
bers
Fibonacci example — This is the serial recursive implementation.

recursive integer function fib (n) result(res)
implicit none

integer , intent(in) :: n
integer :: x, vy
if (n < 2) then
res = n
else

x = fib (n—-1)
y = fib (n—-2)
res = x +y
endif
end function fib

program main
implicit none

interface
function fib (n)
integer :: fib
integer , intent(in) :: n
end function fib
end interface

integer :: NW, result

NW = 30
result = fib (NW)
print *, "fib (” NW;”)="_ result

end program main

0O Ui Wi+

I e T R R s
N O U W= OO

18
19
20
21
22
23
24
25
26
27
28
29
30
31

Tasks in OpenMP 59

Figure 7.11: Parallel Fibonacci program using the divide and con-
quer pattern

Parallel implementation of the Fibonacci program using OpenMP tasks
— Two tasks create child tasks recursively. taskwait ensures the direct child tasks com-
plete before the merge. The base case to exit the recursion is defined for when n < 2.
code:fibonacciTasks

recursive integer function fib (n) result(res)
use omp_lib
implicit none

integer , intent(in) :: n
integer :: x, y
if (n < 2) then
res = n
else

!$omp task shared (x)
x = fib(n-1)

!$omp end task

!$omp task shared (y)
y = fib(n-2)

'$omp end task

'$omp taskwait

res = x +y

endif
end function fib

program main
use omp_lib
implicit none

interface
function fib (n)
integer :: fib
integer , intent(in) :: n
end function fib
end interface

32
33
34
35
36
37
38
39
40

60

integer :: NW, result
NW = 30
'$omp parallel

I$omp single

result = fib (NW)

!$omp end single
!$omp end parallel
print *, 7 fib (”? NW,”)

end program main

”

b

result

Chapter 7

00~ O Ui W N -

DR RN RO RN RN DD DD = = b= = e e e
N OO U WO OO Uk W= OO

Tasks in OpenMP 61

Figure 7.13: The Pi program (from Figure 4.5)

Serial Pi program to numerically estimate a definite integral using the
midpoint rule — The loop iterations are independent other than the summation into

sum.
PROGRAM MAIN
USE OMP_LIB
IMPLICIT NONE
INTEGER :: i
INTEGER, PARAMETER :: num_steps = 100000000
REAL*8 :: x, pi, sum, step
REAL%8 :: start_time , run_time
sum = 0.0
step = 1.0/ num_steps
start_time = OMP.GET_WTIME()
DO i = 1, num_steps
x = (i — 0.5) % step
sum = sum + 4.0 / (1.0 + x * x)
ENDDO
pi = step * sum
run_time = OMP.GETWTIME() — start_time
WRITE(#*,100) pi, num_steps, run_time
100 FORMAT(’pi = ’, f15.8, 7,7, il4, ’ steps,’,f8.3,7 secs’)

END PROGRAM MAIN

00~ O UL i W N =

NN RN N DNDNDNDN DN = = e e s e e
O ITDDUTU R WD OO UtihWND = OO©

29
30
31
32
33

62

Chapter 7

Figure 7.14: Serial recursive Pi program

Serial Pi program using the divide and conquer pattern —Just to make the

code simpler, we pick a number of steps that is a power of 2. This way we can split the

number of steps in half repeatedly and always create intervals that are divisible by 2.

module data_mod

integer , parameter :: num_steps = 1024%x1024%x1024
integer , parameter :: MINBLK = 1024%256

contains

real*8 recursive function pi_comp(Nstart, Nfinish, step)
implicit none

integer
real *8
integer

)

sum = 0.0

intent (in) :: Nstart, Nfinish
x, suml, sum2, step
i, iblk

if (Nfinish — Nstart < MINBLK) then
do i = Nstart, Nfinish — 1

X

sum

endd
else
iblk
suml
sum?2
sum

endif

O

end function

(i + 0.5) = step

=sum + 4.0 / (1.0 + x * x)

Nfinish — Nstart

pi-comp (Nstart , Nfinish — iblk /2, step)
pi_comp (Nfinish — iblk /2, Nfinish, step)
suml + sum?2

end module data_mod

program main
use data_mod
implicit none

result (sum)

34
35
36
37
38
39
40
41
42
43
44
45

Tasks in OpenMP

100

integer :: i
realx8 :: pi, sum, step

step = 1.0 / num_steps
sum = pi_comp (0, num_steps, step)
pi = step *x sum

WRITE(*,100) pi, num_steps
FORMAT(pi = °, f15.8, 7,

end program main

)

il4

)

)

steps)

63

64 Chapter 7

Figure 7.15: Parallel recursive Pi program

Parallel Pi program using tasks — It is accomplished with the divide and conquer
pattern by splitting the problem into two subtasks to calculate sum! and sum?2, recursively

solving each task, and then combining the results.

1 module data_mod

2 integer , parameter :: num_steps = 1024%x1024%x1024
3 integer , parameter :: MINBLK = 1024%256

4

5 contains

6 real*8 recursive function pi_comp(Nstart, Nfinish, step)
7 use omp_lib

8 implicit none

9

10 integer , intent(in) :: Nstart, Nfinish

11 real*8 :: x, suml, sum2, step

12 integer :: i, iblk

13

14 sum = 0.0

15

16 if (Nfinish — Nstart < MIN.BLK) then

17 do i = Nstart, Nfinish — 1

18 x = (i + 0.5) % step

19 sum = sum + 4.0 / (1.0 + x * x)

20 enddo

21 else

22 iblk = Nfinish — Nstart

23 '$omp task shared (suml)

24 suml = pi_comp (Nstart, Nfinish — iblk /2, step)
25 !'$omp end task

26 '$omp task shared (sum2)

27 sum2 = pi-comp (Nfinish — iblk /2, Nfinish, step)
28 '$omp end task

29 '$omp taskwait

30 sum = suml 4 sum?2

31 endif

32

end function

w
w

result (sum)

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ol
92
93
54
%)
96
o7
o8

Tasks in OpenMP

end module data_mod

program main
use omp_lib
use data_mod
implicit none

integer :: i
realx8 :: pi, sum, step

step = 1.0 / num_steps

'$omp parallel
!$omp single

sum = pi_comp (0, num_steps,

!$omp end single
!$omp end parallel

pi = step * sum

WRITE(*,100) pi, num_steps
100 FORMAT(’pi = ', f15.8,

end program main

)

)

b

i

step);

i14 ,

)

steps)

65

0O Uik WK

W W WNDNDNDNDNDNDNDNDNDNRFH M = = =
D= OO0k WNDEFE O OO Uk WwNn OO

8 OpenMP Memory Model

Figure 8.2: Relaxed memory models and race conditions

A program with a race condition — A relaxed memory model permits the assertion

to fail; i.e., the thread with id ==
x is still 0.
program main

use omp_lib

implicit none

integer :: x, y, T
integer id, nthrds
x =0

y =20

r =20

call omp_set_num_threads(2) !

id = omp_get_thread_num ()
!$omp single
nthrds =

omp_get_num_threads ()

1 can observe values in memory such that r ==1 while

request two threads
'$omp parallel private(id,nthrds)

! verify that we have at least two threads

if (nthrds < 2) stop 1
!$omp end single

if (id = 0) then
x =1
r =X
else if (id = 1) then
if (r = 1) then
y = X;
if (y /= 1) then
stop " fails y==1”
endif
endif
endif

'$omp end parallel
end program main

!
!

Assertion will occasionally fail;
.e.

i

b

r — 1 while x = 0

0O Ui Wi

DD DN DN NN NN = s ==
O© 0 TDU R WN OO0 U kW~ OO

68 Chapter 8

Figure 8.3: Updates may not be fully shared

An erroneous program where updates may not be fully shared — This
program carries out an iterative computation over the elements of an array A. Assume
the function doit () carries out a computation that is embarrassingly parallel with a fixed
subset of the array A selected by the thread ID. This program could fall into an infinite
loop if the value of conv does not issue the break from the while loop and the shared
variable iter is not propagated across all the threads allowing it to trigger the loop exit
condition (iter < MAX).

! sample compile command:
! gfortran —fopenmp —c Fig_8.3 _regPromote. 90
! to generate *x.0 object file

program main
use omp_lib
implicit none

interface
function doit (A, N, id)
integer :: N, id
real*8 :: A(N)
real*8 :: doit
end function
end interface

integer , parameter :: MAX = 10000
integer , parameter :: NMAX = 1000
real , parameter :: TOL = 0.0001

integer :: iter, N
real*8 :: A(NMAX)
real*8 :: conv
integer :: id, nthrd
iter =0

N = 1000

A=0.0

OpenMP Memory Model 69

30 conv = 0.0

31

32 '$omp parallel shared (A,N,iter) firstprivate (conv) private(id,nthrd)
33 id = omp_get_thread_num ()

34 nthrd = omp_get_num_threads ()
35

36 do while (iter < MAX)

37 conv = doit (A, N, id)

38 if (conv < TOL) exit

39 if (id = 0) iter = iter + 1
40 end do

41

42 !$omp end parallel

43

44 end program main

0O Ui Wi

e e e
> W = OO

70 Chapter 8

Figure 8.4: Races due to nowait

Reductions need a barrier — This program carries out a computation inside a parallel
loop and accumulates the result with a reduction. The function called after the loop uses
the SPMD pattern and does not use any of the values computed in the loop, hence the
programmer used a nowait clause. The last function uses the reduction variable which may
not be available for all threads since the reduction is only guaranteed to complete at the

next barrier following the loop. As a result, this is an incorrect program.

integer :: id, nthrds, i

!$omp parallel shared (A, B, sum) private(id, nthrds)
id = omp_get_thread_num ()
nthrds = omp_get_num_threads ()

'$omp do reduction (+:sum)

do i =1, N
sum = sum + big_job (A,N)
end do
!$omp end do nowait
bigger_job (B, id) I a function that does not use A
another_job (sum, id) ! sum may not be available

!'$omp end parallel

0~ O Ui W N -

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22

OpenMP Memory Model 71

Figure 8.5: Synchronization in producer-consumer programs

Pairwise synchronization — A producer-consumer pattern with one thread producing
a result that another thread will consume. This program uses a spin-lock to make the
consumer wait for the producer to finish. Note: This program is not properly synchronized

and as written will not work.

integer :: flag ! flag to communicate when consumer can start
integer :: id, nthrds
flag = 0

!$omp parallel shared(A, flag) private(id, nthrds)
id = omp-_get_thread_num ()
nthrds = omp_get_num_threads ()

! we need two or more threads for this program
if ((id = 0) .and. (nthrds < 2)) stop 1

if (id = 0) then
call produce(A)
flag =1

endif

if (id = 1) then
do while (flag == 0)

! spin through the loop waiting for flag to change

enddo

call consume (A)

endif

!'$omp end parallel

9 Common Core Recap

This chapter provides a summary of the items from OpenMP that make up the
Common Core. Hence, there are not any example programs in this chapter.

1 O Multithreading beyond the Common Core

Page 176: Additional clauses for the Parallel construct

integer :: nthreads
nthreads = omp_get_num_threads()

'$omp parallel if (nthreads < maxthreads/4) num_threads(4)

'$omp end parallel

0O Ui Wi+

CLO W RN DN DN DD RN DN DD N DN DN = = = = = = =
— O O 0 I Ui WD O OO Uk WN = OO

76 Chapter 10

Figure 10.1: Clauses on parallel constructs

Examples of clauses on the Parallel construct — The matrix A is transformed
by a transformation which is assumed to be a unitary transform (i.e., a trace preserving
transform). Notice how continuation of a directive onto an additional line is indicated
by an ampersand (&). We do not show code for initMats() and transform() as their

function bodies are not relevant for this example.

! sample command to compile to object file:
! gfortran —fopenmp —c¢ Fig_10.1 _parClaw.f90

program main
use omp_lib

interface
! initialization function
subroutine initMats (N, A, T)
integer :: N
real , dimension(:,:), allocatable :: A, T
end subroutine
! transform function
subroutine transform (N, id, Nthrds, A, T)
integer :: N, id, Nthrds
real , dimension (:,:), allocatable :: A, T
end subroutine
end interface

real :: trace =0

integer :: i, id, N, Nthrds

real , dimension(:,:), allocatable :: A, T
integer :: narg ! number of Arg
character (len=10) :: name ! Arg name
narg = command_argument_count ()

if (narg = 1) then
call get_.command_argument (1,name)
read (name,x) N

else

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
a0
51
52
53
o4
%)
56

Multithreading beyond the Common Core 77

N = 10
endif

print x, "N="_ N

! allocate space for two N x N matrices and initialize them
allocate (T(N,N))

allocate (A(N,N))

call initMats (N, A, T)

'$omp parallel

1 $omp&:

if (N>100) num_threads(4) default(none) &
shared (A,T,N) private (i,id,Nthrds) reduction(+:trace)

id = omp_get_thread num ()
Nthrds = omp_get_-num_threads ()
call transform (N, id, Nthrds, A, T)

! compute trace of A matrix

! i.e., the sum of diagonal elements
'$omp do
do i =1, N
trace = trace + A(i,i)
enddo

!$omp end do

!$omp end parallel

7

print
end program main

transform complete with trace = 7 trace

Page 180: The lastprivate clause

integer :: i

!$omp do lastprivate(ierr)

doi=1, N
ierr = work(i)
enddo

'$omp end do

0O Ui Wi+

CLO W RN DD NN DNDNDNDNDN — = s
— O O 0D U WD O OO Uk WN = OO

78 Chapter 10

Figure 10.3: Manipulating schedules for worksharing-loops at run-
time

Use of runtime schedules — Function computes forces in a simple molecular dynamics
program. Prints information about the runtime schedule when enabled by the DEBUG
variable. Notice how we do line continuation for an OpenMP compiler directive in our

parallel construct.

! sample compile command to generate .0 object file
! gfortran —fopenmp —c Fig_10.3 _runtimeEx.f90

subroutine forces (npart, x, f, side, rcoff)
use omp_lib
implicit none

interface
! external function for potential energy term
function pot (dist) result(res)
real*8 :: dist
real*8 :: res
end function pot
end interface

integer (kind=omp_sched_kind) :: kind

integer :: chunk_size

logical :: DEBUG

integer :: npart, i, j

real*8 :: x(0:npart*x3+2), f(0:npart*3+2)
realx8 :: side, rcoff

real*8 :: fxi, fyi, fzi

real*8 :: xx, yy, zz, rd, fcomp

character (len=:), allocatable :: schdKind (:)

allocate (character(8) :: schdKind(0:4))
! map schedule kind enum values to strings for printing

schdKind (0) = "ERR”
schdKind (1) = ”static”
schdKind (2) = ”dynamic”

Multithreading beyond the Common Core 79

32 schdKind (3) = ”guided”

33 schdKind (4) = ”auto”

34 DEBUG = .true.

35

36 '$omp parallel do schedule(runtime) &

37 '$omp private (fxi,fyi,fzi,j,xx,yy,zz,rd,fcomp)
38

39 do i = 0, npartx3—1, 3

40 ! zero force components on particle i

41 fxi = 0.0

42 fyi = 0.0

43 fzi = 0.0

44

45 ! loop over all particles with index > i
46 do j = i+3, npart«x3—1, 3

47

48 I compute distance between i and j with wraparound
49 xx = x(i) — x(j)

50 yy = x(i+1) — x(j+1)

51 zz = x(142) — x(j+2)

52

53 if (xx < (—0.5xside)) xx = xx + side
54 if (xx > (0.5xside)) xx = xx — side
55 if (yy < (=0.5%side)) yy = yy + side
56 if (yy > (0.5xside)) yy = yy — side
57 if (zz < (—0.5xside)) zz = zz + side
58 it (zz > (0.5xside)) zz = zz — side
59 rd = xXx % XX + yy * yy + zz x 2z
60

61 ! if distance is inside cutoff radius, compute forces
62 if (rd <= rcoff*xrcoff) then

63 fcomp = pot(rd)

64 fxi = fxi + xxxfcomp

65 fyi = fyi + yyxfcomp

66 fzi = fzi + zzxfcomp

67 I$OMP critical

68 f(j) = f(j) — xxxfcomp

69 f(j+1) = f(j+1) — yy*fcomp

70 f(j+2) = £(j+2) — zzxfcomp

80 Chapter 10

71 1I$OMP end critical

72 endif

73 enddo

74 ! update forces on particle i

75 f(i) = f(i) + fxi

76 f(i41) = f(i+1) + fyi

7 f(i42) = f(i42) + fzi

78 enddo

79 '$omp end parallel do

80

81 if (DEBUG) then

82 call omp_get_schedule(kind, chunk_size)
83 print *, ”schedule ” schdKind (kind),” chunk_size=",chunk_size
84 endif

85 end subroutine forces

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Multithreading beyond the Common Core 81

Figure 10.4: Combining loops to generate one large worksharing-
loop

The collapse clause on a worksharing-loop construct — The Apply function
applies a function input as a function pointer to each element of an N by M array, A. Note

that the pointer expression (A+i*M+j) points to the (i,j) element of the array A.

! sample compile command to generate .0 object file
! gfortran —fopenmp —c Fig_10.4 _loopCollapse.f90

subroutine Apply (N, M, A, MFUNC)
use omp_lib
implicit none

integer :: N, M
real :: A(N,M)
integer :: i, j

interface
subroutine MFUNC (i,j,x)
integer , intent(in) :: i, j
real :: x
end subroutine MFUNC
end interface

! apply a function MFUNC to each element of an N by M array

!$omp parallel do num_threads(4) collapse(2) if (N«M>100)

do i =1, N
do j =1, M
call MFUNC(i, j, A(i,j))
enddo
enddo

!$omp end parallel do
end subroutine

00 ~J O UL i W N -

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

82 Chapter 10

Figure 10.6: Creating a DAG of tasks

Task Dependencies — This program implements the DAG (Directed Acyclic Graph)
shown in Figure 10.5. The functions represent the nodes and the edges of the DAG are
captured by the patterns of depend clauses.

! sample compile command to generate *.0 object file
! gfortran —fopenmp —c Fig_10.6 _taskDep.f90

program main
use omp_lib
implicit none
external :: AWork, BWork, Cwork, Dwork, Ework
real :: A B, C, D, E

'$omp parallel shared(A, B, C, D, E)
!$omp single

!$omp task depend(out:A)
call Awork(A)

!'$omp end task

!$omp task depend (out:E)
call Ework(E)

!'$omp end task

!$omp task depend(in:A) depend(out:B)
call Bwork(B)

'$omp end task

!$omp task depend(in:A) depend(out:C)
call Cwork(C)

!'$omp end task

!'$omp task depend(in:B,C,E)
call Dwork(E)

!'$omp end task

!$omp end single
'$omp end parallel
end program main

0O Ui Wi

DR RN NDNDNDNDN DN == = s = s = e e
CO IO TR WNHHEF OOV U W -=O©

29
30

Multithreading beyond the Common Core 83

Figure 10.7: Threadprivate variables to make variables private to
a thread but global inside a thread

Counting task executions with a threadprivate counter — This program
traverses a linked list in parallel with tasks doing a random amount of work for each
node in the list. A threadprivate variable is used to keep track of how many tasks were
executed by each thread. Note: we do not provide the functions used for the list nor the
list processing.

! sample compile command to generate *.o0 object file

! gfortran —fopenmp —c Fig_10.7 _threadpriv.f90

module data_mod
implicit none

integer :: counter
'$omp threadprivate (counter)
type node

integer :: data

type(node), pointer :: next
end type node
contains

subroutine init_list (p)

type (node), pointer :: p

! init list here

end subroutine

subroutine processwork (p)
type (node), pointer :: p
! proces work here

end subroutine

subroutine freeList (p)
type (node), pointer :: p
! free list here

end subroutine

subroutine inc_count ()
counter = counter + 1

end subroutine

end module data_mod

program main

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
o4
95
56

84 Chapter 10

use omp_lib
use data_mod
implicit none

type(node), pointer :: head
type(node), pointer :: p
counter = 0

call init_list (p)

head => p

'$omp parallel private(p) copyin(counter)
!$omp single
p => head
do
'$omp task firstprivate (p)
call inc_count ()
call processwork(p)
'$omp end task
p => plnext
if (.not. associated(p)) exit
end do
!$omp end single
!$omp end parallel

call freeList(p)
end program main

N O U W N

Multithreading beyond the Common Core 85

Figure 10.8: Threadprivate variables and Fortran common blocks

A counter with threadprivate in Fortran — This code come from the OpenMP
4.5 Examples document (threadprivate.1.f). This Fortran function creates a global scope
variable in Fortran through common blocks. Hence, the counter is placed in a named

common block and that block is made threadprivate.

INTEGER FUNCTION INCREMENT.COUNTER ()
COMMON/INC.COMMON /COUNTER
ISOMP THREADPRIVATE (/INC.COMMON/)
COUNTER = COUNTER +1
INCREMENT COUNTER = COUNTER
RETURN
END FUNCTION INCREMENT.COUNTER

0O Ui Wi

I I N I N B N N T N e e W e S S o G S G Sy S
DU WD O OO Tk WN OO

27
28
29
30
31
32
33

1 1 Synchronization and the OpenMP Memory Model

Figure 11.1: Sequence points from C expressed in Fortran

Examples of sequence points — This code shows the most common sequence points

and the relations sequenced-before, indeterminately sequenced, and unsequenced.

! sample compile command to generate *.0 object file:
! gfortran —fopenmp —c Fig_11.1_seqPts. {90
program main

implicit none

integer :: a , b, ¢, d, e
integer :: i, N = 100
integer , external :: funcl, func2, func3

! Each semicolon defines a sequence point
! all ordered by sequenced—before relations.

a=1; b=2;, ¢=0

! 3 sequence points: the full statement plus the 2 function calls.

! The + operator is not a sequence point so the function calls
! are unordered and therefore, indeterminately sequenced.

d = func2(a) + func3(b)

! each expression in the for statement is a sequence point.
! they occur in a sequenced—before relation.

do i =1, N
! function invocations are each a sequence point. Argument
I evaluations are unordered or indeterminately sequenced.
e = funcl (func2(a), func3(b))

enddo

! There is no Fortran increment syntax such as at++ in C.
! a=a+ 1 evaluates a + 1 first , then store the new value in

a=a+1
end program main

a.

0O Ui Wi+

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23

88 Chapter 11

Figure 11.3: Producer-consumer program with data races

Pairwise synchronization with incorrect synchronization — A producer con-
sumer pattern with one thread producing a result that another thread will consume. This
program uses a spin-lock to make the consumer wait for the producer to finish. Note:
While the logic in this program is correct, it contains a data race. Hence it is not a valid

OpenMP program and as written will not work.

integer :: flag ! flag to signal when the consumer can start
integer :: id, nthrds
flag = 0

call omp_set_num_threads(2)

!'$omp parallel shared (A, flag) private(id, nthrds)
id = omp-_get_thread_num ()
nthrds = omp_get_num_threads ()

! we need two or more threads for this program
if ((id == 0) .and. (nthrds < 2)) stop 1

if (id = 0) then
call produce(A)

flag =1
endif
if (id = 1) then
do while (flag = 0)
! spin through the loop waiting for flag to change
enddo
call consume(A)
endif

!'$omp end parallel

0~ O Ui W N -

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Synchronization and the OpenMP Memory Model 89

Figure 11.4: Spin locks and flushes

Pairwise synchronization with flushes — A producer consumer program with a
spin lock and explicit flushes. This code is incorrect since the operations on the flag
define a data race.

integer :: flag ! flag to signal when the consumer can start
integer :: id, nthrds
flag = 0

call omp_set_num_threads(2)

!$omp parallel shared(A, flag) private(id, nthrds)
id = omp_get_thread_num ()
nthrds = omp_get_num_threads ()

! we need two or more threads for this program
if ((id = 0) .and. (nthrds < 2)) stop 1

if (id = 0) then
call produce(A)
!$omp flush
flag = 1
!$omp flush (flag)
endif
if (id = 1) then
'$omp flush (flag)
do while (flag == 0)
!$omp flush (flag)
enddo
!$omp flush
call consume (A)
endif
!'$omp end parallel

90 Chapter 11

Figure 11.5: Spin-lock and flushes with atomics

Pairwise synchronization with flushes and atomics — A producer consumer
program with a spin lock and explicit flushes. With the use of atomics to update and then

read flag, this program is race free on any processor.

1 integer :: flag, flag_temp ! flag to signal when the consumer can start
2 integer :: id, nthrds

3 flag =0

4 call omp_set_num_threads(2)

5

6 !Somp parallel shared(A, B, flag) private(id, nthrds, flag_temp)
7 id = omp-_get_thread_num ()

8 nthrds = omp_get_num_threads ()

9

10 ! we need two or more threads for this program
11 if ((id = 0) .and. (nthrds < 2)) stop 1

12

13 if (id = 0) then

14 call produce(A)

15 !$omp flush

16 !$omp atomic write

17 flag = 1

18 !$omp end atomic

19 endif

20 if (id = 1) then

21 do while (flag_temp /= 0)

22 !'$omp atomic read

23 flag_temp = flag

24 !'$omp end atomic

25 enddo

26 !$omp flush

27 call consume(A)

28 endif

29 !$omp end parallel

00 ~J O Ui W N =

e e T e B R G
N O U W= OO

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Synchronization and the OpenMP Memory Model 91

Figure 11.6: Synchronization mapped onto the elements of a data
structure

Locks to protect updates to a histogram — Generate a sequence of pseudorandom

numbers and assigns them to a histogram.

! sample compile command to generate *.o0 object file
! gfortran —fopenmp —c Fig_11.6 _hist.f90

program main
use omp_lib
implicit none

integer , parameter :: num_trials = 1000000 ! number of x values
integer , parameter :: num_bins = 100 ! number of bins in histogram
realx8, save :: xlow = 0.0; ! low end of x range
real*8, save :: xhi = 10.0; ! high end of x range
realx8 :: x
integer=8 :: hist(num_bins) ! the histogram
integerx8 :: ival, i
real*8 :: bin_width ! the width of each bin in the hi, stogram
real*8 :: sumh, sumhsq, ave, std_dev
! hist_lcks is an array of locks, one per bucket
integer (kind=omp_lock_kind) :: hist_lcks (num_bins)

interface
function drandom () result(val)
real*8 :: wval
end function
subroutine seed(low_in, hi_in)
real*8, intent(in) :: low.in, hi_in
end subroutine
end interface

call seed(xlow, xhi) ! seed random generator over range of x
bin_width = (xhi — xlow) / dble(num_bins)

92 Chapter 11

34 ! initialize the histogram and the array of locks
35 !$omp parallel do schedule(static)

36 do i = 1, num_bins

37 hist (i) = 0

38 call omp_init_lock (hist_lcks (i))

39 enddo

40 !$omp end parallel do

41 ! test uniform pseudorandom sequence by assigning values
42 ! to the right histogram bin

43 '$omp parallel do schedule(static) private(x,ival)
44 do i = 1, num_trials

45 x = drandom ()

46 ival = int8 ((x — xlow)/bin_width)

47 ! protect histogram bins.

48 ! Low overhead due to uncontended locks

49 call omp_set_lock (hist_lcks (ival))

50 hist (ival) = hist(ival) + 1

51 call omp_unset_lock (hist_lcks (ival))

92 enddo

53 !'$omp end parallel do

54

55 sumh = 0.0

56 sumhsq = 0.0

57 ! compute statistics (ave, std_dev) and destroy locks
58 '$omp parallel do schedule(static) reduction (+:sumh,sumhsq)
59 do i = 1, num_bins

60 sumh = sumh + hist (i)

61 sumhsq = sumhsq + hist (i)*hist (1)

62 call omp_destroy_lock (hist_lcks (i))

63 enddo

64 '$omp end parallel do

65

66 ave = sumh / dble(num_bins)

67 std_dev = sqrt (sumhsq /dble(num_bins) — ave % ave)

68 end program main

Synchronization and the OpenMP Memory Model 93

Figure 11.7: Atomics make our producer-consumer program much
simpler

Pairwise synchronization with sequentially consistent atomics — A producer

consumer program but now the form of atomic construct used implies all the flushes we

need.
1 integer :: flag, temp_flag ! flag to signal when the consumer can start
2 integer :: id, nthrd
3 flag =0
4
5 call omp_set_num_threads(2)
6
7 !$omp parallel shared(A, flag) private(id, nthrd, temp_flag)
8 id = omp_get_thread_num ()
9 nthrds = omp_get_num_threads ()
10
11 ! we need two or more threads for this program
12 if ((id == 0) .and. (nthrds < 2)) stop —1
13
14 if (id = 0) then
15 call produce(A)
16 !$omp atomic write seq-cst
17 flag = 1
18 !$omp end atomic
19 endif
20
21 if (id = 1) then
22 do while (1)
23 !'$omp atomic read seq_cst
24 flag_temp = flag
25 if (flag_-temp /= 0) exit
26 enddo
27 call consume(A)
28 endif

29 !$omp end parallel

1 2 Beyond OpenMP Common Core Hardware

Figure 12.6: First touch and reducing memory movement costs

STREAM initialization with and without first touch — Without first touch:
step 1.a + step 2. With first touch: step 1.b + step 2.

1 ! Step 1.a Initialization by initial thread only
2 do j = 1, VectorSize

3 a(j) =1.0

4 b(j) = 2.0

5 c(j) =0.0

6 enddo

7

8 ! Step 1.b Initialization by all threads (first touch)
9 call omp_set_dynamic (0)

10 '$omp parallel do schedule(static)
11 do j = 1, VectorSize

12 a(j) = 1.0

13 b(j) = 2.0

14 c(j) = 0.0

15 enddo

16 '$omp end parallel do

17

18 ! Step 2 Compute

19 '$omp parallel do schedule(static)
20 do j = 1, VectorSize

21 a(i) = b(j) +d * c(j)

22 enddo

23 '$omp end parallel do

0~ O Ui W N =

NeJ

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

96 Chapter 12

Figure 12.9: Nested parallelism

Nested OpenMP parallel constructs — There are 3 levels of nested OpenMP
parallel regions, 2 threads in each level. The num_threads clause is used to specify the

number of threads desired for each parallel region.

subroutine report_num-_threads(level)
use omp_lib
implicit none

integer :: level
'$omp single
write (%,100) level , omp_get_-num_threads ()
100 format (” Level 7, I3, 7: number of threads in the team is 7, 16)
'$omp end single
end subroutine report_num_threads

program main
use omp-_lib
implicit none
external :: report_num_threads

call omp_set_dynamic (. false.)
'$omp parallel num_threads(2)
call report_num_threads(1)
!$omp parallel num_threads(2)
call report_num_threads(2)
!$omp parallel num_threads(2)
call report_num_threads(3)
!$omp end parallel
!$omp end parallel
!$omp end parallel
end program main

Beyond OpenMP Common Core Hardware 97

Figure 12.12: Controlling thread affinity

Affinity format example — We set the thread affinity format string and then ran the
STREAM benchmark on the server-node with logical CPU numbering from Figure 12.4.
We show two different executions of the STREAM benchmark: one with OMP_PROC_BIND
set to spread and the other with OMP_PROC_BIND set to close.

export
export

ifort -qopenmp -DNTIMES=20 -DSTREAM_ARRAY_SIZE=64000000 -c stream.f
ifort -qopenmp -o stream stream.o

OMP_DISPLAY_AFFINITY=true

OMP_AFFINITY_FORMAT="Thrd Lev=J3L, thrd_num=%5n, thrd_aff=%15A"

export
export

#F P P BH H BH BH

export

OMP_PLACES=threads
OMP_NUM_THREADS=8
OMP_PROC_BIND=spread

$./stream | sort -k3

<stream results omitted ...>
Thrd Lev=1 , thrd_num=0
Thrd Lev=1 , thrd_num=1
Thrd Lev=1 , thrd_num=2
Thrd Lev=1 , thrd_num=3
Thrd Lev=1 , thrd_num=4
Thrd Lev=1 , thrd_num=5
Thrd Lev=1 , thrd_num=6
Thrd Lev=1 thrd_num=7

$ export OMP_PROC_BIND=close

$./stream |sort -k3

<stream results omitted ...

Thrd
Thrd
Thrd
Thrd
Thrd
Thrd
Thrd
Thrd

Lev=1 , thrd_num=0
Lev=1 , thrd_num=1
Lev=1 , thrd_num=2
Lev=1 , thrd_num=3
Lev=1 , thrd_num=4
Lev=1 , thrd_num=5
Lev=1 , thrd_num=6
Lev=1 thrd_num=7

thrd_aff=0
thrd_aff=8
thrd_aff=16
thrd_aff=24
thrd_aff=1
thrd_aff=9
thrd_aff=17
thrd_aff=25

thread_aff=0
thread_aff=32
thread_aff=2
thread_aff=34
thread_aff=4
thread_aff=36
thread_aff=6
thread_af=38

0~ O Ui W N -

DO = = = s e e e e
O O© 00 IO Uik WN = O ©

98 Chapter 12

Figure 12.13: Serial Pi program (from Figure 4.5)

Serial Pi program —This program approximates a definite integral using the midpoint
rule The loop iterations are independent other than the summation into sum. Note that we
must explicitly represent all constants as floats to prevent internal operations from using

double precision.

PROGRAM MAIN
IMPLICIT NONE

INTEGER, :: i
INTEGER, PARAMETER :: num_steps = 1000000
REAL :: x, pi, sum, step

step 1.0/ num _steps
DO i = 1, num_steps
x = (i — 0.5) % step
sum = sum + 4.0 / (1.0 + x * Xx)

ENDDO
pi = step * sum
print x, "pi=", pi

END PROGRAM MAIN

0O Ui Wi+

NN RN N NDNDNDN DN = == s e e s e e
O I TR W OO U W —= OO

Beyond OpenMP Common Core Hardware 99

Figure 12.14: Unrolled loop in the Pi program

Serial Pi program with loops unrolled by 4 — Numerical integration to estimate

Pi. We assume the number of steps is evenly divided by 4 just to keep the program simpler.

PROGRAM MAIN
IMPLICIT NONE

INTEGER, :: i

INTEGER, PARAMETER :: num_steps = 100000
REAL :: x0, x1, x2, x3, pi, sum

REAL :: step

sum = 0.0
step = 1.0/ num_steps

DO i = 1, num_steps, 4

x0 = (i — 0.5) x step
x1 = (i + 0.5) = step
x2 = (i + 1.5) x step
x3 = (i + 2.5) x step
sum = sum + 4.0 * (1.0 / (1.0 + x0 % x0) &
&+ 1.0 /(1.0 + x1 = x1) &
&+ 1.0 / (1.0 + x2 % x2) &
&+ 1.0 /(1.0 + x3 % x3))
ENDDO
pi = step * sum

WRITE(*,100) pi, num_steps
100 FORMAT('pi = ', f15.8, ’,’, il4, ’ steps’)

END PROGRAM MAIN

100 Chapter 12

Figure 12.15: Calling a C function with SSE code from Fortran

Pi program using SSE vector intrinsics — Numerical integration to estimate Pi.

We assume the number of steps is evenly divided by 4 just to keep the program simpler.

Save the contents in 2 files as below:

! To build and run:

! % gcc —c get_pi_vec.c

! % gfortran get_pi_vec.o Fig_12.15_explicitVecPi.f90
' % ./a.out

File 1: "Fig_12.15_explicitVecPi.f90"

program main
interface
function get_pi_vec () result(r) bind(C, name="get_pi_vec")
use, intrinsic :: iso_c_binding, only : c_float
real(c_float) :: r
end function get_pi_vec
end interface

real :: pi

pi = get_pi_vec(Q)

print *, "in Fortran: pi=", pi
end program

#File 2: "get_pi_vec.c"

#include <x86intrin.h>
static long num_steps = 100000;
float scalar_four = 4.0f, scalar_zero = 0.0f, scalar_one = 1.0f;
float step;
float get_pi_vec (O
{
int 1i;
float pi;
float vsum([4], ival;

Beyond OpenMP Common Core Hardware 101

step = 1.0f/(double) num_steps;

_m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
_m128 one

_mm_loadl_ps(&scalar_one) ;

__m128 four = _mm_loadl_ps(&scalar_four);
__m128 vstep = _mm_loadl_ps(&step);

__m128 sum = _mm_loadl_ps(&scalar_zero);
_ml128 xvec;

_m128 denom;
_m128 eye;

for (i = 0; 1 < num_steps; i =1 + 4){

ival = (float) ij;

eye = _mm_loadl_ps(&ival);

xvec = _mm_mul_ps(_mm_add_ps(eye,ramp), vstep);
denom = _mm_add_ps(_mm_mul_ps(xvec,xvec), one);
sum = _mm_add_ps(_mm_div_ps(four,denom), sum);

}

_mm_store_ps (&vsum[0], sum);

pi = step * (vsum[0] + vsum[1] + vsum[2] + vsum[3]);
return pi;

102 Chapter 12

Figure 12.16: Multithreading with SSE vectorization

A multithreaded and vectorized Pi program — This program carries out a
numerical integration to estimate Pi. We assume the number of steps is evenly divisible by

4 and that we got 4 threads just to keep the program simple.

Save the contents in 2 files as below:

! To build and run:

' % gcec —c —fopenmp get_pi_par_vec.c

!' % gfortran —fopenmp get_pi_par_vec.o Fig_12.16 _parVecPi. 90
' % ./a.out

! Save the contents in 2 files as below:
! To build and run:
9 ! % gcec —c —fopenmp get_pi_par_vec.c

|

|

10 ! % gfortran —fopenmp get_pi_par_vec.o Fig_12.16 _parVecPi.f90
11 ' % ./a.out

12

13 #File 1: "Fig_12.16 _parVecPi.f90”

14

15 program main

16 use omp_lib

17 interface

18 function get_par_pi_vec () result(r) bind(C, name="get_par_pi_vec”)
19 use, intrinsic :: iso_c_binding , only : c_float
20 real (c_float) :: r

21 end function get_par_pi_vec

22 end interface

23

24 real :: pi

25 pi = get_par_pi_vec ()

26 print %, ”7in Fortran: pi=", pi

27 end program

28

29 #File 2: ”"get_pi_-par_vec.c”

30

31 #include <x86intrin.h>
32 static long num_steps = 100000;
33 #define MAXTHREADS 4

Beyond OpenMP Common Core Hardware 103

34 float scalar_four = 4.0f, scalar_zero = 0.0f, scalar_one = 1.0f;
35 float step;
36 float get_pi_par_vec ()

37 {

38 int i, k;

39 float local_sum [MAXTHREADS];

40 float pi, sum = 0.0;

41 step = 1.0f/(double) num_steps;

42

43 for (k = 0; k < MAXTHREADS; k++) local_sum [k] = 0.0;
44

45 #pragma omp parallel num_threads(4) private(i)

46 {

47 int ID = omp_get_thread_num ();

48 float vsum|[4], ival, scalar_four = 4.0;

49

50 ~ml128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
51 ~-m128 one = _mm_loadl_ps(&scalar_one);

52 ~-m128 four = _mm_loadl_ps(&scalar_four);

53 __m128 vstep = _mm_loadl_ps(&step);

54 ~-ml128 sum = _mm_loadl_ps(&scalar_zero);

55 _-ml28 xvec;

56 _.m128 denom;

o7 _-m128 eye;

58

59 // unroll loop 4 times ... assume num_steps\%4 =0
60 #pragma omp for schedule(static)

61 for (i = 0; i < num_steps; 1 =1 + 4){

62 ival = (float) 1i;

63 eye = _mm_loadl_ps(&ival);

64 xvec = _mm._mul_ps(.mm_add_ps(eye,ramp), vstep);
65 denom = _mm_add_ps(_mm_mul_ps(xvec,xvec), one);
66 sum = _mm_add_ps(_.mm_div_ps(four ,denom), sum);
67 }

68 _mm_store_ps(&vsum [0] , sum);

69 local_sum [ID] = step * (vsum[0] + vsum|[1] + vsum|[2] + vsum|[3]);
70 }

71 for (k = 0; k < MAXTHREADS; k++) pi += local_sum [k];

72 return pi;

104 Chapter 12

73}

0~ O Ui W N -

—_ =
= O ©

12
13
14
15
16
17
18
19
20
21
22

Beyond OpenMP Common Core Hardware 105

Figure 12.17: Vectorization with the OpenMP SIMD construct

OpenMP program to vectorize the Pi program — The simd clause directs the
compiler to explicitly vectorize the program. As with many OpenMP features, this clause
asserts to the compiler that it is safe to vectorize the code and it will do so, even if there

are loop-carried dependencies that should prevent vectorization.

PROGRAM MAIN
IMPLICIT NONE

INTEGER, :: i
INTEGER, PARAMETER :: num_steps = 100000
REAL :: x, pi, sum, step

sum = 0.0
step = 1.0/num_steps

I$OMP parallel SIMD private(x) reduction (+:sum)
DO i = 1, num_steps
x = (i — 0.5) % step
sum = sum + 4.0 / (1.0 + x * x)
ENDDO
I$OMP end parallel SIMD

pi = step * sum
print =, "pi=", pi

END PROGRAM MAIN

0~ O UL i W N =

e e
=W N = OO

15
16
17
18
19
20
21
22
23
24
25

106 Chapter 12

Figure 12.18: Combining multithreading and vectorization

OpenMP program to multithread and vectorize the Pi program — This is
a familiar “parallel do” approach to solving the problem but we have added one additional

clause: a simd clause for explicit vectorization.

PROGRAM MAIN

USE OMP_LIB
IMPLICIT NONE

INTEGER :: i

INTEGER, PARAMETER :: num_steps = 100000
REAL :: x, pi, sum, step

sum = 0.0
step = 1.0/ num_steps

!'$omp parallel do simd private(x) reduction (+:sum)
DO i = 1, num_steps

x = (i — 0.5) % step

sum = sum + 4.0 / (1.0 + x * x)
ENDDO

!'$omp end parallel do simd

pi = step *x sum

print *x, ”pi=", pi
END PROGRAM MAIN

00 ~J O UL i W N =

Tl e e S e S
© 00 O UL W N - O ©

Beyond OpenMP Common Core Hardware 107

Figure 12.19: Target construct with default data movement

OpenMP program for elementwise multiplication of vectors on a GPU —
Default data movement moves the vectors a, b, and ¢ onto the device before the computa-
tions starts and back onto the host (the CPU) when the computation has completed.

program main
use omp_lib
implicit none

integer , parameter :: N = 1024
real*8 :: a(N), b(N), c¢(N)
integer :: i

! initialize a, b, and ¢ (code not shown)

'$omp target
!'$omp teams distribute parallel do simd

do i =1, N
c(i) = c(i) + a(i) = b(i)
enddo

!'$omp end teams distribute parallel do simd
!'$omp end target

end program main

0O Ui Wi+

DO N N = = e e e
N = O O 00O Ui WN - OO

108 Chapter 12

Figure 12.20: Explicit data movement between the host and a
device

Explicit data movement with the target directive — The map clause controls
movement of data from the host to a device or from the device onto the host. When
working with pointers to arrays, you need to use array sections to define precisely which
data to move.

program main
use omp_lib

integer , parameter :: N = 1024
real «x8, allocatable , dimension (:) :: a, b, c
integer :: i

allocate (a(N))
allocate (b(N))
allocate (c(N))

! initialize a, b, and ¢ (code not shown)

!'$omp target map(to:a(1:N),b(1:N)) map(tofrom:c(1:N))
!'$omp teams distribute parallel do simd

do i =1, N
c(i) = c(i) + a(i) = b(i)
enddo

!$omp end teams distribute parallel do simd
!'$omp end target

end program main

00 ~J O UL i W N =

CO W RN DN DN DD N DN DN N DN DN = = = = = = = s
— O © 00D U WNDEHFE O OO Uk W= OO

Beyond OpenMP Common Core Hardware 109

Figure 12.21: Data movement between multiple target regions

Multiple target regions — The map clause controls movement of data from the host
to a device or from the device onto the host. When working with pointers to arrays, you

need to use array sections to define precisely which data to move.

program main
use omp_lib

integer , parameter :: N = 1024

real x8, allocatable , dimension (:) :: a, b, ¢, d
integer :: i

allocate (a(N))

allocate (b(N))

allocate (c(N))

allocate (d(N))

! initialize a, b, and ¢ (code not shown)

!'$omp target map(to:a(1:N),b(1:N)) map(tofrom:c(1:N))
!'$omp teams distribute parallel do simd

do i =1, N
c(i) = c(i) + a(i) = b(i)
enddo

!'$omp end teams distribute parallel do simd
!$omp end target

'$omp target map(to:a(1:N),b(1:N)) map(tofrom:d(1:N))
!'$omp teams distribute parallel do simd

do i =1, N
d(i) =d(i) + a(i) * c(i)
enddo

!'$omp end teams distribute parallel do simd
!'$omp end target

end program main

0O Ui Wi

W W W WK DNDNDNNDDDDDNDDNDNDN DN = e e e
W OO WNDEFE O OO Uk WNRE OO

110 Chapter 12

Figure 12.22: Managing data movement across multiple target
regions

Target Data Region — A single target data region manages data at the level of a
device. It persists and is used between multiple target constructs. code:ompTargDat

program main

use omp_lib
integer , parameter :: N = 1024

real «x8, allocatable , dimension (:) :: a, b, ¢, d
integer :: i

allocate (a(N))

allocate (b(N))

allocate (c(N))

allocate (d(N))

! initialize a, b, and ¢ (code not shown)

!'$omp target data map(to:a(1:N),b(1:N),c(1:N)) map(tofrom:d(1:N))

'$omp target
!'$omp teams distribute parallel do simd

do i =1, N
c(i) = c(i) + a(i) = b(i)
enddo

!'$omp end teams distribute parallel do simd
!'$omp end target

'$omp target
!'$omp teams distribute parallel do simd

do i =1, N
d(i) = d(i) + a(i) * c(i)
enddo

!$omp end teams distribute parallel do simd
!'$omp end target

!'$omp end target data

end program main

1 3 Your Continuing Education in OpenMP

Figure 13.1: Task with critical constructs can deadlock

A subtle deadlock with tasks: — This is the tasking.9.c example from the OpenMP
4.5 Examples document. This function can deadlock if the thread suspends task 1 to begin

work on task 2.

1 ! sample compile command to generate .0 object file:
2 ! gfortranc —fopenmp —c Fig_13.1 _taskBug.f90

3

4 subroutine work()

5 use omp_lib

6 implicit none

7

8 '$omp task I task 1

9 '$omp task ! task 2

10 !'$omp critical I Critical region 1

11 ! do work here

12 !'$omp end critical ! end Critical Region 1
13 '$omp end task ! end task2

14 !'$omp critical ! Critical Region 2

15 !'$omp task ! task 3

16 ! do work here }

17 !'$omp end task ! end task3

18 !$omp end critical ! end Critical Region 2

19 !$omp end task ! end task 1

20 end subroutine

	Contents
	Preface to the Fortran supplement
	Parallel Computing
	The Language of Performance
	What is OpenMP?
	Threads and the OpenMP Programming Model
	Parallel Loops
	OpenMP Data Environment
	Tasks in OpenMP
	OpenMP Memory Model
	Common Core Recap
	Multithreading beyond the Common Core
	Synchronization and the OpenMP Memory Model
	Beyond OpenMP Common Core Hardware
	Your Continuing Education in OpenMP

